
Machine Learning Takes Automotive 
Radar Further
Some may think that the greatest challenge to automating vehicles is in developing 
the algorithms that tell a vehicle where and how to drive – the planning and 
policy. It is not. The greatest challenge lies in sensing and perception, in building 
a perception system that can reliably create the most accurate and robust 
environmental model for the planning and policy functions to act upon. In this way, 
perception systems are fundamental to enabling higher levels of automation. 

As OEMs look for the best perception systems to deploy in their vehicles to enable 
lifesaving, active safety capabilities, radar offers a multitude of benefits, including low 
system cost and resiliency through a wide range of weather and lighting conditions.

These attributes make radar an ideal foundation for building any vehicle’s environmental 
model, and they become especially critical as vehicles move beyond basic warning 
functions and into assistance and automation functions. Centralizing the intelligence 
and applying machine learning in just the right way can turbocharge the performance, 
ensuring that vehicles capitalize on radar’s strengths while fusing its data with that of 
other sensing modalities. In doing so, OEMs can create the best canvas on which to 
design and implement planning and policy functions that provide advanced features  
and solve the most challenging corner cases.
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Machine Learning and Radar

Active safety capabilities save lives and prevent 
accidents. For example, forward collision warning 
with automatic emergency braking reduces rear-
end collisions by 50%, according to the Insurance 
Institute for Highway Safety. In a 2019 Consumer 
Reports survey, 57% of vehicle owners said 
an advanced driver-assistance feature in their 
vehicle had prevented them from getting into 
an accident. These solutions typically employ a 
forward-facing radar or camera – or ideally, both.

The challenge for OEMs in the coming years 
will be to bring more advanced active safety 
features to the market in a cost-effective way, 
allowing OEMs to offer the capabilities on more 
models and bring them to more consumers – 
while at the same time laying the groundwork for 
higher levels of automation, which will have to 
address the most difficult sensing challenges.

Success depends on two primary functions: 
the quality of the information provided by 
the sensors, and the ability of the compute 
to interpret that data. On the sensor side, 
radar-centric solutions provide an excellent 
foundation for this path. On the compute side, 
a machine learning system can use the data 
coming from radar sensors and combine it 
with data from other sources to create a very 
robust picture of a vehicle’s environment.

BENEFITS OF RADAR

The main sensors in use today on vehicles 
are radar and cameras, with ultrasonics 
playing a role in short distances at low speeds 
and lidar used in autonomous driving. 

Part of the reason radar is widely used is that 
it can reliably indicate how far away an object 
is. Typical long-range automotive radars can 
provide range measurements on objects that 
are as much as 300 meters to 500 meters away. 
Cameras, by contrast, have to try to estimate 
how far away an object is based on the size 
of the object in the camera’s image and other 
factors. Even leveraging a stereoscopic approach, 
this can be challenging. Further, resolution 
becomes an issue, as a single pixel in a camera 
image is very broad at long range, making it 
harder for a camera to discern those objects. 
Focusing optics can help, but they limit the field 
of view, leading to a challenging compromise 
typical of camera-based perception systems.

At the same time, radar makes inherent 
measurements of relative speed, so at the same 
time it is providing a range measurement, it 
can also tell how quickly something is moving 
toward the vehicle or away from it. Cameras 
and lidars may need to take multiple images 
over time to estimate relative speed.
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will be better able to anticipate movements 
if it knows exactly what it is looking at.

Lidar has drawn attention because it offers 
some unique strengths. It can take direct range 
measurements at high resolution and form 
a grid, where each grid cell has a particular 
distance associated with it. Because lidar 
operates at a much higher frequency, it has 
a much shorter wavelength than traditional 
radar – and that means it can provide higher 
angle resolution than radar, allowing lidar to 
identify the edges of objects more precisely.

One downside of lidar is that it needs to 
have a clean and clear surface in front 
of it to be effective, which of course can 
be especially problematic on a moving 
vehicle. One unfortunate yet well-placed 
beetle could render a vehicle sightless.

An equally significant issue is that lidar is 
a less mature technology than radar, which 
means it’s much more expensive. The expense 
limits how widely lidar can be used in today’s 
high-volume automotive marketplace.

To ensure a reliable and safe solution, a vehicle 
should have access to a combination of different 
sensing technologies and then use sensor fusion 
(see sidebar→) to bring those inputs together 
to gain the best possible understanding of the 
environment. But even if that isn’t possible – if 
the cameras are smudged and the lidar is having 
bug-splatter issues – the radars in the vehicle 
can deliver excellent information, especially when 
paired with the right machine learning algorithms.

Because radar uses radio waves instead of light 
to detect objects, it works well in rain, fog, snow 
and smoke. This stands in contrast to optical 
technologies such as cameras – or in the future, 
lidar – which are generally susceptible to the 
same challenges as the human eye. Consider 
the last time you were blinded by direct sunlight 
while driving, or tried to see clearly through a 
windshield covered with dirt and grime. Optical 
sensors have the same challenges, but radars 
can still see well in those cases. And unlike 
cameras, radar does not need a high-contrast 
scene or illumination to sense well at night.

Radar also provides an OEM significant packaging 
flexibility, thanks to its ability to work when placed 
behind opaque surfaces. Optical technologies 
need to be able to “see” the road, which requires 
them to be visible from the outside of a vehicle 
– preferably at a high point so they can have 
good line of sight and stay clear of road dirt 
and grime. Radar, by contrast, can be placed 
behind vehicle grilles, in bumpers, or otherwise 
hidden away, giving designers significant 
flexibility to focus on vehicle aesthetics.

WHERE TO USE OPTICAL SENSORS

Cameras are well suited for object classification. 
Only a camera can read street signs, and 
a camera is best at telling if an object is 
another vehicle, a pedestrian, a bicycle or 
even a dog. Each of those objects is going 
to behave differently, so the vehicle’s system Figure 2. Radar can be located behind the outer body of a vehicle.

Figure 1. Radar can perceive its environment in a 

variety of weather and lighting conditions.
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SENSOR FUSION

Sensor fusion is the ability to bring together inputs from multiple radars, lidars and cameras to form a single 
model or image of the environment around a vehicle. The resulting model is more accurate because it balances 
the strengths of the different sensors. Vehicle systems can then use the information provided through sensor 
fusion to support more-intelligent actions.

Of course, the more sensors on a vehicle, the more challenging fusion becomes, but also the more opportunity 
exists to improve performance. 

In the past, the processing power to analyze sensor data to determine and track objects had been packaged 
with the cameras or radars. With Aptiv’s Satellite Architecture approach, the processing power is centralized 
into a more powerful active safety domain controller, allowing for data to be collected from each sensor and 
fused in the domain controller.

• Long-range sensing
• Object movement
• All-weather performance

• Precise 3D object detection
• Range accuracy
• Free-space detection

• Object classification
• Object angular position
• Scene context
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AN AUTOMOTIVE FIRST

Aptiv pioneered advanced driver-
assistance systems (ADAS) technologies 
in 1999 with an adaptive cruise 
control system for the Jaguar XKR. 
Using a microwave radar in the front 
of the vehicle, the adaptive cruise 
control (ACC) system measured the 
distance and relative speed of the 
preceding vehicle and used throttle 
and braking to ensure that the Jaguar 
stayed 1 to 2 seconds behind it.

The technology won a PACE Award, 
but the radar was expensive, so the 
capability was aimed narrowly at luxury 
vehicles. Engineers joked that if you 
bought the radar, you got the car for 
free. Many generations of hardware 
later, the technology is smaller, lighter 
and less than one-tenth the cost. Radar 
has proven successful through decades 
of harsh use, and vehicles of all levels 
now rely on the technology to provide 
active safety features to consumers.

MACHINE LEARNING

Machine learning is a subset of artificial 
intelligence that refers to a system’s ability to 
be trained through experience with different 
scenarios. As vehicles become more automated, 
developers can use machine learning to train 
systems to identify objects and to better 
understand their environment with less data. 

One challenge machine learning helps address 
with radar is edge detection. Radar’s longer 
wavelengths produce lower resolution that can 
lead to under-resolved targets, making it difficult 
to tell where a target’s edges are. When that 
happens, it becomes challenging to interpret the 
data and resolve the scene. Engineers are working 
on ways to improve the resolution of radar, such 
as moving up from the common 77 GHz frequency 
used in today’s automotive applications to 120 
GHz or higher, with a corresponding reduction in 
wavelength. That allows a much higher resolution 
for the same size sensor. Even with today’s 
radars, however, machine learning can help to 
characterize different scenarios when the data is 
difficult to describe through standard algorithms. 

Developers can present many examples of objects 
in a particular category to a machine learning 
system, and it can learn how signals are scattered 
by complex objects with many reflection points. 
It can take advantage of contextual information. 
And it can even learn from simultaneous data 
provided by cameras, lidars or HD maps to 
classify objects based on radar signals.

Further benefits are possible if we use 
machine learning judiciously. Instead of 
taking a brute-force approach and applying 
machine learning to all of the raw data 
provided by a radar, we can do some classical 
preprocessing and then apply machine learning 
just to those portions that make sense.
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While the data provided by a radar is more 
complex than what comes in from vision systems 
– providing range and range rate in addition to 
location of objects – it is also quite valuable. It is 
well worth the effort to intelligently sift through 
the data to extract meaning. Aptiv’s 20-year 
history of working with automotive radar – we 
were the first to put a radar in a Jaguar in 1999 to 
enable adaptive cruise control – has given us the 
expertise needed to pull out the relevant data in 
the most efficient way.

COST AND POWER ADVANTAGE

Emerging architectures have satellite radars 
distributed throughout a vehicle, connected 
via Ethernet to a central system-on-chip with a 
machine-learning accelerator. Aptiv is using this 
kind of Satellite Architecture to process data 
from five radars or more and keep costs down. 
The approach is highly data efficient, and the 
machine-learning models can run on processors 
that cost less and consume less power than 
alternatives. 

For example, an implementation that processes 
data from six short-range radars would use about 
1W, whereas an implementation processing data 
from six cameras could consume 10W to 15W, and 
a high-end graphical processing unit consumes 
around 100W. 

In another example, machine learning can glean 
information on range and free-space detection on 
radar-generated data to deliver results that are 
close to lidar, but at radar’s lower cost.

Potential savings come from not having to build 
parallel implementations of processing, RAM and 
communications in every sensor, and from the 
efficiencies gained from centralizing software in a 
domain controller. The lower cost means that even 
standard or entry-level vehicles can be equipped 
with this lifesaving technology.

Many automotive radars utilize an array of 
antennas to measure angle. In classical radar 
signal processing, the digitized signals from each 
antenna are converted to range and speed. The 
signals are compared across the antenna array 
to make angle measurements. An example of 
preprocessing would be to use classical signal 
processing to isolate regions of interest, to focus 
on objects with certain ranges and speeds. The 
signals from each antenna with a common range 
and speed can then be used to train a system. 

Common radars can utilize up to 12 antennas, 
and five or more radars can be employed on 
a single vehicle. Those antennas allow digital 
beamforming, where the signals from each 
individual antenna are digitized and then 
combined digitally. The result is that the radars 
sample the signals one time and then form beams 
in as many different directions as necessary. By 
looking across these arrays and analyzing the 
places where the radars overlap, the system can 
deduce the angles of different objects. 

This kind of analysis gives the system a rich basis 
of information to feed into a neural network, 
which in turn can apply machine learning to 
produce an even clearer picture of the scene. 
Without this interim step, an AI system would have 
to determine the scene from the raw digitized 
signals themselves in real time, which means 
it would need to be extremely powerful and 
therefore more expensive and resource-intensive, 
and it would require long training sequences to 
figure out what to make of the data. Plus, such a 
system would be difficult to troubleshoot – if the 
vehicle detected an object that was not there, for 
example, it could be difficult to figure out where 
the processing went wrong. Combining classical 
processing with machine learning can provide 
some orthogonality in the data processing, which 
increases the robustness of the system.
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CHALLENGING SCENARIOS

There are many scenarios that human drivers encounter every day that do not lend themselves to easy 
solutions when it comes to advanced driver assistance systems. If there is an object in the road, is it safe 
to drive over? How should the vehicle adjust its driving if an adjacent truck creates a blind spot? Machine 
learning coupled with radar can address these and many more concerns. Here are a few examples.

Debris in the road

Small objects or debris in the road can pose a challenge, 
particularly at high speeds. Radar with machine learning has 
been shown to improve range by more than 50% and enable it 
to track small objects at 200 meters, which allows plenty of time 
for the vehicle to either change lanes or come to a safe stop. 

Objects that are safe to drive over

Human drivers often take for granted their ability to gauge 
whether an object on the road is something they could drive 
over. They do not estimate that the object is 5 cm high or 10 
cm. They tend to act on intuition – a feeling, perhaps, based 
on their past experience. A machine learning system can also 
be trained with objects that are safe to drive over and those 
that are not. Programmers can create a portion of the overall 
processing chain focused on this question as a special subset 
of object classification – “over-drivable,” yes or no? – and pass 
the answer on to software that can take action if needed.

Vulnerable road users

Vulnerable road users include bicyclists and motorcyclists. This has been a particular area of focus for 
regulatory and rating agencies because these users have little protection in the event of a collision, and 
they can be more difficult to identify than other vehicles. Machine learning reduces misses by 70% 
compared to classical radar signal processing, and sensor fusion with other sensing modalities can 
improve detection further.
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Pedestrians

Detecting pedestrians can present unique challenges to any kind of sensors, particularly in a cluttered 
urban environment when many pedestrians could be crossing a street and walking in different directions. 
By using all dimensions of radar data as described earlier, however, advanced machine learning 
techniques can help the vehicle see the pedestrians in the cluttered environment. It can even spot  
them behind a parked car or other obstruction that may hide them from view.

Pedestrian near path and parked vehicle: Pedestrian alert during rear parking maneuver:

Occluded pedestrians:
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Low-reflectivity road boundaries

Some road boundaries, such as flat concrete walls seen from acute angles, do not reflect radar strongly. 
Machine learning can use robust segmentation and signal processing across range, Doppler and antenna 
response over time to figure out where those boundaries are.

Blind spot

Sensor occlusion – a blind spot created by another object, like a large truck – is one of the biggest 
challenges of automated driving. It is less a problem of failing to detect occluded objects than it is the 
fact that today’s systems are not fully aware of their blind spots. Human drivers have learned to account 
for unseen possibilities and guard against threats that may be hidden. Aptiv’s perception approach 
creates this awareness and allows upstream functions to act defensively, as a human driver would.
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Stopped car in lane

Machine learning can help provide accurate object detection and tracking, including object boundaries 
and robust separation. With advanced processing methods, we can decrease position error and object-
heading error by more than 50%, which means that the vehicle is better able to tell when another vehicle 
is stopped in its lane.

360-degree sensing

Aptiv’s sensor fusion approach brings together inputs from various sensors around a vehicle. If the 
vehicle is equipped with enough sensors, this means it can have a 360-degree view of its environment, 
and that complete picture will help the vehicle make better decisions. Machine learning helps the system 
identify objects within that scope, classifying them as cars, trucks, motorcycles, bicycles, pedestrians and 
so forth. It can determine their heading. And it can help separate and identify stationary or slow-moving 
objects.

MACHINE LEARNING AND RADAR

10



Tracking inside a tunnel

Machine learning can also help a vehicle understand when it is inside a tunnel. Tunnels have historically 
been a challenging environment for radar. The tunnel walls provide a reflective surface, which can result in 
a very high number of detections that can overwhelm a radar’s capacity to process targets. Also, these 
reflections can come from high elevation angles, which can make stationary targets difficult to be 
identified as such. Further, tunnels will often have fans to help clear stagnant air, and the spinning blades 
of the fan could confuse a radar into thinking it is seeing a moving object. All of these issues can be 
mitigated by making adjustments to the radar processing when the vehicle is in a tunnel. By applying 
machine learning to radar data processing, the system is able to filter out noise from positive detections 
with much greater accuracy than classical methods have allowed. It can now better interpret radar returns 
in tunnels and other closed environments, classify targets such as fans, and effectively solve radar’s 
tunnel challenge.

THE ROAD FROM HERE

As OEMs look to bring active-safety capabilities to their full range of vehicles, they will need sensors that 
are cost-effective and able to deliver data in challenging conditions, and the intelligence to get the most 
useful information from the data. They can achieve that through machine learning and a combination of 
sensors anchored by radar. Innovations such as Aptiv’s RACam can package those sensors – in this case, 
radar and camera – into one compact unit.

Aptiv’s Satellite Architecture centralizes the intelligence that receives data from those sensors, improving 
performance by keeping latency low and reducing sensor mass by up to 30%. OEMs can then develop 
differentiating features for various levels of automated driving on top of this robust base of sensing and 
perception technology, building from Level 1 automation to Level 2 and Level 2+.

Longer term, Aptiv’s Smart Vehicle Architecture enables the overall vision by structuring the electrical 
and electronic architecture of a vehicle in a way that makes the most sense for its sensing and perception 
needs, creating a path to Level 3 and Level 4 automation. In the meantime, OEMs can take important 
steps today to help democratize active safety and ensure that everyone has access to these lifesaving 
technologies.
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