
Smart Vehicle Architecture™
A SUSTAINABLE APPROACH TO BUILDING THE NEXT GENERATION
OF VEHICLES

The automotive industry has introduced an unprecedented array of electrical and
electronic innovations in recent decades — from passive safety features such as
airbags to immersive user-experience and infotainment, as well as active safety
features such as automatic emergency braking.

Each new innovation requires its own electronic control unit (ECU) with its own
power, its own processing, its own data and its own connectivity. Each feature’s
hardware brings its own wiring, introduces complexity, takes up space and adds
weight to the vehicle.

This approach barely meets the needs of today’s feature-rich vehicle and
certainly won’t scale as the industry moves toward fully autonomous driving,
the most complex challenge it has ever contemplated. What’s needed is a new
vehicle architecture that simplifies the design, centralizes computing power and
optimizes electrical/electronic content, components and functionality.

WHITE PAPER

1

This is an exciting and dynamic time for the
automotive industry. Advancements in software,
compute and sensors are enabling a wide array
of innovations in advanced safety systems on the
path to fully autonomous driving. Consumers are
demanding new features for safety, comfort and
convenience with increasing frequency. Consumer
preferences, tightening regulations and improving
battery costs are moving the industry toward
electric vehicles. And 5G and other wireless
technologies are creating opportunities to deliver
vehicles that are even more connected than they
are today.

The challenge, of course, is that all these trends
are happening at once. Space within a vehicle’s
chassis is finite, as is the customer’s wallet.
It’s not sustainable to continue the traditional
approach of adding a new ECU for each new
feature — as each requires its own power, its own
processing, and its own data and connectivity. It
won’t scale, and it’s too complex.

OEMs realize this. They see that the incremental,
monolithic approach to delivering customer
features and functions is driving unmanageable
complexity in all phases of the vehicle life cycle.
In the development phase, where speed-to-
market is critical to competitiveness, complexity
increases development times. And a monolithic
approach to development, where software and
hardware are inextricably linked, limits reuse
and makes any engineering changes difficult.
In the manufacturing and assembly phase,
complexity leads to components that are difficult
to assemble manually and don’t lend themselves
to automation. And in the postproduction phase,
complexity reduces the ability to update features
throughout the vehicle’s life.

What’s needed is a simpler approach: a new
vehicle architecture for electrical and electronic
systems designed from the ground up for today’s
feature-rich vehicles as well as tomorrow’s highly
automated vehicles.

THE PHILOSOPHY

To address these challenges and prepare for
the future, Aptiv developed Smart Vehicle
Architecture™. SVA™ embodies a vehicle-level
design philosophy with three primary goals. The
architecture must:

• Reduce complexity. By simplifying the
hardware and software topology within the
vehicle, SVA reduces interdependencies
between the many different ECUs currently
required to enable various functions.

• Unite diverse applications. SVA brings
together software from many different
domains across the vehicle to unlock
new functionality and improve life cycle
management.

• Empower OEMs. SVA gives OEMs the ability
to fully control the software that defines
the user experience of their vehicles and to
enhance that functionality over time.

SVA achieves these goals through three
fundamental principles that differentiate the
approach from today’s architectures.

First, SVA abstracts the software from the
hardware. While such separation is already
common on most of today’s IT platforms, this
concept is now gaining momentum in the
automotive industry. Separating software from
hardware allows continuous release cycles for the
software. Just as apps on today’s smartphones
regularly receive incremental updates and
improvements, the software in a vehicle should be
able to update more frequently than the hardware
it runs on. This separation also allows developers
to reuse software more easily as they move it to
different platforms, rather than port it.

Smart Vehicle Architecture (SVA™)

SMART VEHICLE ARCHITECTURE

2

Second, SVA separates input/output (I/O) from
compute. That is, the architecture takes all of the
physical connections to peripheral sensors and
devices and places this functionality into zone
controllers that are separate from the computers
in the domain controllers. An analogy is the
docking station for a laptop computer. All of the
peripherals — keyboard, mouse, printer and so
forth — plug into the docking station, allowing
the laptop to be swapped in and out easily. In
a vehicle with SVA, the zone controller delivers
power and data connections to the sensors and
other devices, with just a backbone connection to
the domain controllers. This approach improves
scalability and reduces physical complexity.

Third, SVA “serverizes” compute. Once the I/O is
separated from the compute, the approach can
allocate the computing resources in a vehicle
among various software applications dynamically,
as needed, much like a cloud computing model.
A vehicle with SVA can allocate the necessary
compute power, RAM, graphics processing, and
so on, to applications based on priority and need.
Serverization can even allow sharing of resources
among physically separate domain controllers,
so they can operate logically as one. Additionally,
this approach supports mixed criticality; that
is, a critical safety feature that requires more
processing power, for example, has priority over
less critical functions such as infotainment.

TRADITIONAL SERVERS

Variety of applications run on the

same physical hardware

VEHICLE OPEN SERVER PLATFORM (OSP)
(Simplified)

SAFETY CRITICAL NON-SAFETY CRITICAL

SOFTWARE
AS A SERVICE
(SaaS)

PLATFORM
AS A SERVICE
(PaaS)

INFRASTRUCTURE
AS A SERVICE
(LaaS)

APPLICATION ADAS /
AD

IN-CABIN
EXPERIENCE

OEM
SAFETY-

RELEVANT
APPS

HMI
MANAGER

OEM
APPS

3RD
PARTY
APPS

:

MIDDLEWARE

PLATFORM/OS

SAFETY MIDDLEWARE HYPERVISIOR

O/S WITH SAFE DYNAMIC PARTITIONING

COMPUTE

DATA & POWER DISTRIBUTION

SENSORS, PERIPHERALS & ACTUATION

HARDWARE
(CPU / GPU / APU, Memory)

INFRASTRUCTURE
(Virtualization, Servers, Storage, Networking)

APPLICATION :

MIDDLEWARE :

PLATFORM/OS :
›

›

›

Figure 1. How a server model translates to SVA’s Open Server Platform.

THE PHYSICAL COMPONENTS

Servers provide value at three service layers —
infrastructure, platform and software (see Figure
1) — and these layers affect how SVA physically
manifests itself in a vehicle. The physical layout of
the architecture brings with it additional benefits,
such as design for automated assembly, support
for redundant power and data, and electrification.

Foundational components include:

• High-voltage busbars. These sit directly on
the battery and deliver power throughout an
electric vehicle. Their flat profile and semi-rigid
nature make it easier to package them into a
vehicle.

• Dock & Lock™ system. This dock attaches to
the floorboard of a vehicle and provides a base
to which a robot can attach all of the other
central elements of the architecture.

• Unified power and high-speed backbone.
This backbone carries power to every
component of the architecture. It also
aggregates all the data communications within
the vehicle. It can even support redundancy
easily and efficiently when needed through a
dual-ring topology.

SMART VEHICLE ARCHITECTURE

3

PARALLEL DEVELOPMENTS ACCELERATE TIME TO MARKET

Concept Definition Hardware Design Software Design System ValidationTODAY

SVA™ Hardware ValidationConcept Definition Hardware Design

Software Design Software Features Validation

ValidationSoftware Design

ValidationSoftware Design

ValidationSoftware Design

ValidationSoftware Design

ValidationSoftware Design

ValidationSoftware Design

ValidationSoftware Design

ValidationSoftware Design

Connected to the backbone are the elements
resident in the central compute cluster, which
include:

• Secure Connected Gateway (SCG). This is
the SVA master controller and body master. It
controls critical functions related to waking up
the system and the flow of data into and out
of the vehicle through wireless connections.

• Open Server Platform. These domain
controllers run the software required for
enabling advanced safety features and the
in-cabin user experience. They also have
the ability to dynamically share compute
resources, providing improved performance
and cost-efficient redundancy.

• Power Data Centers. These are the zone
controllers, the “docking stations” that
connect all of the sensors and peripherals.
Depending on the configuration of the
vehicle, there could be two to six PDCs, with
different variants helping to scale performance
appropriately.

• Propulsion and Chassis Controller. This
controller provides the mission-critical engine
management (for an internal combustion
engine) or battery management system (for a
battery electric vehicle), as well as all chassis
functionality such as steering and braking.

HOW SVA REDUCES COSTS

This approach to the software architecture and
physical structure of the vehicle represents the
logical future state as OEMs continue to scale
up the features and intelligence of their vehicles.
But consumers also have to be able to pay for it.
The good news is that by reducing the complexity,
SVA effectively lowers the total cost of ownership
throughout all phases of the vehicle life cycle:
development, manufacturing and postproduction.

Development

Current development approaches are very linear
in the automotive industry. After the concept
phase, developers have to wait for the target
hardware to understand how software will
function on that system. Then, after the software
has been fully coded, it has to be tested and
validated, which can take a long time.

SVA allows developers to create software
completely independently of the underlying
hardware. It defines hardware performance
classes, enabling integrators to combine diverse
software applications and then certify their
performance for a chosen hardware class.
Developers don’t have to know which exact
device the software will run on — they just have
to define what hardware performance levels are
required for the software to run optimally. As long
as the hardware meets the specifications of the
hardware class, the software will be able to use it.

Figure 2. SVA allows developers to create software in parallel.

SMART VEHICLE ARCHITECTURE

4

ASSET PROTECTION

In SVA, the sensor intelligence and
processing power are centrally located
in the passenger compartment of the
vehicle, rather than distributed in the
sensors themselves, as is common
today. This helps reduce the total system
cost, as well as the cost of sensor
components, which in turn reduces
costs associated with minor accidents
involving those sensors — and therefore
the cost of insurance.

Taking cues from the iterative development
techniques used in agile methods, SVA allows
developers to upload updates dynamically. Testing
and validation become easier to manage, and
developers can go to market faster with richer
features.

Taken together, Aptiv estimates these techniques
cut system integration and testing costs by 75
percent and lower warranty costs by 75 percent
as well.

Manufacturing

SVA also cuts costs in the manufacturing phase
in two important ways.

The first is through up-integration. Today,
functions are distributed across multiple ECUs
located throughout a vehicle. When those
are consolidated into a smaller set of domain
controllers, the vehicle is able to shed multiple
microcontrollers, multiple power supplies,
multiple housings, and copper wiring — all
while maintaining or even increasing compute
capabilities. This results in a 20 percent reduction
in weight for the wiring harnesses and a 20
percent reduction in weight and packaging space
for compute.

The second way it cuts costs is through direct
labor reduction. For example, because the PDCs
simplify the physical complexity and connect
directly to the sensors, wiring harnesses can be
limited to 2.5 meters or less, which means
our customers need just one or two people
to install them. Compare that to the 10 or
more people it takes to install today’s most
complex architectures, and OEMs could save
50 percent in labor costs.

Further, because SVA takes advantage of a
rigid backbone and zone harnesses, as well
as the Dock & Lock connection system, SVA
can achieve the highest levels of automation,
further reducing labor costs and meeting the
increasingly strict quality thresholds these
advanced features and functions demand.

Passenger Cell

Crumple Zone

Crumple Zone

SMART VEHICLE ARCHITECTURE

5

FUNCTION
Historically

DOMAIN
Today

ZONE
SOFTWARE-
DEFINED
2025 and beyond

50 – 100 distributed
ECUs per vehicle

Supporting
incremental
functionality through
domain centralization

Reducing complexity
through intelligent
zone control and
management

Enabling software to
define new features
independent of
underlying hardware

DOMAIN AND ZONE CONTROL REPRESENT
BUILDING BLOCKS TOWARDS SVA™

Figure 3. Steps toward the full realization of SVA.

Post-production

SVA continues to reduce costs even after
a vehicle has left the factory. With software
abstracted from hardware, vehicle manufacturers
could build a library of certified software — an
“app store” for the car, in effect. These apps
could potentially include software developed by
the OEM, by Aptiv, or even by a third party. Over
time, that library could expand into new functions
or allow for updates to existing applications.

Vehicle manufactures and software developers
can upgrade software in vehicles throughout its
life cycle using over-the-air (OTA) updates. The
vehicles receive those updates via the Aptiv SCG,
which in turn updates the other systems in the
vehicle after the new code has been validated,
and then at an appropriate time when the vehicle
can be safely updated. This lowers warranty
costs by fixing issues without having to go to a
dealership, and results in greater brand loyalty
and customer satisfaction.

For OEMs, this capability creates the potential
for software reuse, enabling an infinite number
of vehicle-specific software builds and virtually
eliminating software maintenance costs tied to
model year updates.

FIRST STEPS

SVA is a holistic vehicle-level architecture
approach, but it allows OEMs to take incremental
steps to get there. The first step or “building
block” is typically to implement domain controllers
to up-integrate and expand some of the compute
that is currently distributed throughout vehicles,
particularly for domains such as advanced safety
or infotainment. The next major step is to use
zone controllers to break apart the physical
complexity into more manageable zones, while
further driving up-integration of distributed
ECUs. From there, an OEM can then move
toward a server architecture with abstraction and
dynamic allocation of compute.

With those pieces in place, an OEM has the
building blocks of SVA, and will be able to take
advantage of its ability to enable advanced
features and high degrees of automation
through a software-defined architecture that is
sustainable well into the future.

SMART VEHICLE ARCHITECTURE

6

