
Benefits of Software Containers in
Safety-Critical Environments
The transition from hardware-defined to software-defined vehicles is changing
everything about the auto industry and beyond. It opens up a world of possibilities for
connected, autonomous and electric vehicles, with more innovation than ever before.
It also lets OEMs introduce new features quickly, both before and after sale, to meet
evolving consumer tastes and needs.

To fulfill its promise, however, the software-defined vehicle requires a hardware
architecture that is more optimized and designed for evolution, and a software
architecture that is more open and enables a new approach to software development
and management. OEMs need the flexibility to modify individual functions rather than
issue updates to entire monolithic code bases, and they need a technology that ensures
that any changes will not negatively affect adjacent safety-critical software in the
vehicle.

Software containerization provides that flexibility. Making containers a reality in the
safety-critical automotive environment will require shifts in automotive software
architecture, as well as standardization across the industry.

WHITE PAPER

1

NEW ARCHITECTURES

As software-driven functionality has increased in
the automotive world, the compute hardware has
evolved. Instead of electronic control units (ECUs)
with dedicated hardware and software performing
specific functions, high-performance compute
platforms have emerged, such as central vehicle
controllers (CVCs) and open server platforms
(OSPs). CVCs up-integrate body control functions
and networking, while OSPs consolidate functions
around the specific domains of advanced driver-
assistance systems (ADAS) and user experience.

The new approach to hardware saves space and
cost, but it also demands a new approach to
software. If software is monolithic — as it has been
with ECUs — improvements will require full retesting
and validation of the entire device it runs in, and
any over-the-air (OTA) updates will be much larger
than necessary, requiring bandwidth and time.

Key to moving away from the monolithic approach
is modularization and abstraction of functions
into manageable software blocks, a practice
common in the IT world. Controlling a device
within the vehicle, for example, is performed by
specialized software that handles all signaling to
and from the device while presenting a standard,
simplified service interface to higher levels of
software. This way, the higher-level software does
not have to be concerned with the details of how
the device is managed, and developers – who are
sometimes far removed from the specifics of a
vehicle – can focus on just the higher-level logic.

In fact, all vehicle functions can be abstracted
and presented as services to other software,
creating what is known as a service-based
architecture. Software containers fit neatly into
this approach.

MONOLITHIC
Single, Complex, Intertwined

MICROSERVICES ARCHITECTURE
Standard APIs

Common Interface
Component 1

Component 2

Component 3

Component 4

Component 1 Component 2 Component 3 Component 4

Leaving Monolithic Architectures Behind

Containerization eliminates interdependencies on common software libraries,
allowing each function to be updated independently.

SOFTWARE CONTAINERS

2

Containerization, developed for use in cloud
computing, places applications in standard
structures that ensure that the dependencies
— in the form of service interfaces — among
applications are known and controlled. This
helps drive stability and consistency in the
code base, simplifying isolation of services, and
effectively reducing the chances of interfering
with other software. It also improves security by
keeping attacks that target one application from
spreading to others.

By using containers, OEMs and suppliers can
adopt modern, agile software methodologies:
small teams continually improving individual
functions throughout the life of a vehicle with
OTA updates, with such changes integrated
quickly and automatically. By aligning with open
specifications such as that of the Cloud Native
Computing Foundation, an OEM and its suppliers
can easily update vehicle platforms and even port
functions from one platform to another, saving
time and money while reducing the risk of errors
and systemwide failures.

As one piece of the multifaceted transition to
software-defined vehicles, containerization is
gaining traction across the industry for non-
safety-related functions. Because their use
in automotive is still new, containers have not
yet been certified for use with safety-critical
automotive applications such as ADAS, but
they are ideally suited to safety features in
several ways. Solutions leveraging containers
have proven performance in other mission-
critical industries, including aerospace, defense,
telecom and medical, which helps validate their
viability. Key industry players are collaborating
to make containers based on the specifications
developed by the Open Container Initiative (OCI)
that are compliant with industry-standard safety
certifications.

CONTAINERS’ ROLE IN
AUTOMOTIVE COMPUTING

A container is a lightweight packaging format
for software. It often includes the application for

CONTAINERCONTAINERVIRTUAL MACHINEVIRTUAL MACHINE

Application 1

Binary Files
& Libraries

Application 2

Binary Files
& Libraries

Application 3

Binary Files
& Libraries

Container Engine

Application 1

Binary Files
& Libraries

Application 2

Binary Files
& Libraries

Operating
System

Application 3

Binary Files
& Libraries

Operating
System

Operating SystemHypervisor

CONTAINERVIRTUAL MACHINES

HARDWAREHARDWARE

VIRTUAL MACHINE CONTAINER

Operating
System

Virtual Machines vs. Containers

Hypervisors support virtual machines, each with their own operating system and applications, while
containers sit on top of an operating system and container engine, making them lighter.

SOFTWARE CONTAINERS

3

one function and the specific components that
the application requires to run, such as libraries
or a programming language runtime. Multiple
applications residing in containers can run on one
system-on-a-chip or CPU and share processor
cycles, memory, storage and networking
resources at the operating system level.

Containers were first developed so that cloud-
based applications could easily be distributed
and scaled up and down. Like virtual machines
(VMs), they allow diverse workloads to run
concurrently in a shared computing environment.
However, VMs are virtualized at the hardware
level and incorporate a complete computing
environment for the guest application, including
an OS. Containers are virtualized at the OS
level and are typically smaller. An automotive
software architecture might include both VMs
and containers: VMs that allow more than one OS
on shared hardware, and containers to separate
functions under each OS.

Vehicle platforms require three main elements
for containerization: a runtime environment that
supports containers, a container orchestration
system such as Kubernetes, and an OTA
network connection for dynamically exchanging
containers to and from the cloud in a safe and
reliable way. The runtime environment provides
standardization among containers and visibility
for monitoring the health of each container. A
container orchestration system adds another
layer for overseeing all containers in a given
vehicle.

Containerization turns each function into a
standard module that can be added or removed
like a Lego® block, making it easier to install,
update and manage software. For scalability,
the OS can temporarily add more instances of
a function at particular times, such as when the
vehicle starts up. For portability, a container
that performs one function in a comprehensive
way can likely be reused in different domains,
models and platforms. Containers also ease the
integration of legacy software to next-generation
vehicles.

In contrast, adding a feature to a traditional
automotive code base might require the whole
code base to be retested with up to 100,000
miles of driving due to the unpredictable ways in
which that feature might interact with others. This
approach is growing more costly in terms of time
and money as vehicle platforms become more
complex.

There are several potential benefits to using
containers in automotive environments, including
easier OTA updates, increased portability, the
ability to adopt modern software methodologies,
and coordination across development
environments.

OTA updates

The most important way containerization can
benefit OEMs is by making OTA updates faster,
easier and more frequent. This is becoming
essential as more consumers expect — and in
many cases are willing to pay for — new features
throughout the life of the product. OTA updates
offer new ways to increase owner satisfaction and
brand loyalty and potentially generate additional
revenue.

In traditional, monolithic software environments,
after-sale updates tend to be major, infrequent
and difficult to distribute over the air. With
containerization, they can be smaller and more
targeted, both in the number of functions they
address and the number of vehicles to which they
are distributed. Code verification is standardized
and routine, while lower bandwidth requirements
mean that most updates can be sent over cellular
networks.

Just how much faster and more frequent the
updates will be will depend on many factors,
not the least of which is how the containers are
structured and how lightweight their design is.
This is an important area of focus architecturally
as developers determine the optimal way to divide
applications into smaller pieces, each in its own
container.

SOFTWARE CONTAINERS

4

Optimized Containers

Containerization and microservices open
up new possibilities, and applications
themselves don’t have to be monolithic.
Where it makes sense, they can be
divided into smaller modules, each in its
own container, making updates more
targeted and lightweight.

By ensuring the container structure is optimized,
OEMs can more easily perform updates for
new features, subscriptions, third-party apps
and personalization of individual vehicles.
As consumers show interest in new features,
dedicated teams can deliver them quickly, which
creates an efficient feedback loop.

Portability

Containers also make automotive functions
portable across vehicle platforms, models and
even vendors. A feature developed for one
platform can be deployed throughout an OEM’s
product lineup with less integration effort.
Legacy applications, when placed within standard
containers, can easily be integrated into new,
containerized vehicle platforms. Portability
also prevents vendor lock-in: OEMs can switch
to a new supplier more easily, swapping the
previous vendor’s software for another supplier’s
containerized application providing identical
services.

The portability of containers means the
requirements of hardware platforms no longer
dictate software development. OEMs can reuse
applications as their vehicle platforms evolve
from specialized ECUs to domain controllers, to
full serverization on central computing engines.
Manufacturers can even change the hardware in

current models or vehicles already on the road
with much lower software update costs.

Modern methodologies

The auto industry has been late to adopt
software methodologies that have made other
sectors more agile and fast-moving, including
DevOps and continuous integration/continuous
deployment. OEMs using a traditional waterfall
software development process in three-to-five-
year development cycles can no longer keep up
with technology or consumer tastes.

Containers provide the modular architecture
needed to quickly accommodate changes in
requirements and design. Teams devoted to
specific functions can develop and update the
software in independent release cycles, owning
that code throughout the life cycle of each
product or even multiple platforms. Automotive
companies that use these methodologies will also
have a larger pool of software developers from
which to hire.

Coordination

The more that OEMs and their suppliers
standardize on the same container specifications,
the more they will be able to streamline software
rollouts. Most automotive applications go through

Application

Binary Files
& Libraries

Container Engine

Operating System

CONTAINER

Container Engine

Operating System

CONTAINERS

Application
Components

Files and Libraries Specific
to Those Components

SOFTWARE CONTAINERS

5

several environments in the course of simulation,
development, testing, verification and production,
with separate teams managing each environment.
Without containers, the teams need to carefully
coordinate any changes to their environment that
might affect how those applications run.

Reusing a common container format means
that each function has the same context in
all environments and that developers can use
standard tests to verify whether the code in
the container is running correctly. This removes
bottlenecks to development in the cloud or any
other environment. In addition, once a vehicle is
on the road, containerized applications might be
able to use the cloud for extra processing power.
For example, some automation or infotainment
functions could run partly in the cloud, in
identical containers.

THE SAFETY CHALLENGE

Traditionally, safety-critical automotive software
has been static, isolated in specialized ECUs
and limited in size to minimize the overhead of
certifying code. In the future, OEMs want to be
able to run these functions on shared hardware
and update them more frequently.

Co-locating safety-critical functions with other
applications creates a need for logical boundaries
between applications with different safety and
security requirements. Containerization offers
a way to implement a modularized architecture
via lightweight, easily managed components
that can encapsulate safety-critical functions
and form those boundaries, so that one
container image can be modified without having
unpredictable effects on others running in
the same environment. This protects safety-
critical applications from unexpected failures in
noncritical functions that might otherwise spread
and violate safety requirements.

The role of VMs

On some vehicle platforms today, such logical
boundaries are created by VMs managed by
hypervisors with automotive safety certifications.

While VMs will continue to play an important
role in safety-critical environments, containers
present certain advantages. Because more
containers than VMs can share a given amount of
computing resources, containers can be lighter
and require less overhead for verifying safety.
In addition, containers are easier to standardize
across environments and update over the air.

VMs and containers could be used together in a
safety-critical scenario. For example, a VM could
run a real-time operating system such as Wind
River VxWorks®, and software containers could
run on top of that RTOS.

The value in dependability

The well-defined boundaries of containers lend
themselves well to applications in situations where
it is important to know exactly what to expect.

For example, without containers, developers
might not know for sure whether a particular
update will overcommit hardware resources until
they attempt to load it — and, if it works, they
will be hesitant to make any changes for fear
of causing it to stop working. In contrast, the
defined boundaries of the container mean that
developers always know precisely the amount of
resources it will use.

Containers also are not persistent — that is, they
are loaded from a master image every time the
vehicle starts. They do not change over time,
and the data they use is stored in a different
location. This aspect is attractive from a security
perspective because it means that containers can
always be counted on to behave the same way,
and the services they provide can be considered
immutable. It also means that unused applications
can be dismissed, freeing up system resources.

A STANDARD IS VITAL

Having a safety-certified runtime environment
for containers would ensure that all containers
had the resources needed to guarantee safety.
No runtime for containers has yet been certified
for automotive safety, but efforts are underway.

SOFTWARE CONTAINERS

6

There is much work to be done to create the
processes and documentation required for all of
the different development phases.

Standardization can bring the benefits of
containerization to more automotive vendors,
expanding the market opportunity for next-
generation software and the availability of easily
integrated applications. In addition, the broad
adoption of one container format will create
momentum for safety certification.

There is growing industry support for the idea of
container standardization, and the OCI container
specification offers a proven approach. OCI offers
benefits to automotive software development
that are similar to what it already provides in
cloud computing: Rather than having to adapt
applications to each OEM’s environment and
perform time-consuming integration work,
developers could expect to find an OCI-compliant
runtime environment on any vehicle platform and
write code that could be added to the platform
with only minor modifications.

This would go far toward realizing the vision
of software-defined vehicles as platforms for
applications from a broad ecosystem of suppliers.
OCI could play a role like that of the Android OS
in smartphones. OEMs could tap into a much
larger universe of features, from which customers
could choose when purchasing a vehicle or
download (or subscribe to) later.

Hurdles to standardization

Containerization is a widely accepted approach
to computing but has been used mostly in
environments with unconstrained resources.
Due to critical safety requirements and tight
constraints on space, weight and power
consumption, vehicles pose a different set of
problems.

Despite this, the challenges of using containers
in automotive are less technical than cultural.
Several vendors are already working on
automotive runtime environments that would
support containers and are making efforts to

attain safety certifications. To realize the benefits
of containerization, OEMs and suppliers also need
to change long-standing development practices
and shift some resources from integration and
testing to innovation and ongoing updates. While
all players could eventually benefit, some need to
take the initiative to begin the transition.

The first OEM that introduces containerization
across its supplier ecosystem might need three
or more years to achieve it. But if the industry
coalesces around a single standard, such as OCI,
others could soon follow in order to derive the
same benefits of increased agility, innovation,
cost savings, upgradability and time to market.
The next step will be for OEMs to implement a
container management layer on vehicle platforms,
which might take several more years.

SEEDING INDUSTRY EVOLUTION

Aptiv is cooperating with other vendors
to accelerate container adoption and
standardization across the automotive industry.
We demonstrated OTA deployment of OCI-
compliant containers to vehicles, using our
container orchestration system, at CES 2023.
Wind River, the edge software provider Aptiv
acquired in 2022, offers an embedded runtime OS
that supports OCI containers, and we are working
with Wind River to update its automotive safety
certification for its newest technology offerings
in 2024.

The costs and limitations of using traditional,
monolithic software have not become
major barriers to OEMs’ business models or
competitiveness. But as vehicle platforms
become steadily more complex and consumers
expect safety, comfort and convenience features
to evolve more quickly, the pain will increase
with each model release. With strong industry
cooperation, soon standardized containers that
support safety-critical functions will provide
an ideal path to more agile development and
continuous improvement.

SOFTWARE CONTAINERS

7

ABOUT THE AUTHORS

Florian Baumann
Senior Director, Software, Advanced Vehicle Architecture, Aptiv

Florian Baumann leads a team focused on developing cutting-edge technologies to solve some of the
most demanding problems of the automotive sector. With experience in machine learning, software
development, DevOps and cloud architectures, Florian is applying his lifelong obsession with technology
to create Aptiv’s next-generation in-vehicle software platform, reducing its complexity while providing a
seamless developer experience.

Michel Chabroux
Vice President, Product Management, Wind River

Michel Chabroux drives technology and business strategies for Wind River’s Intelligent Edge portfolio. He
has more than 20 years of industry experience, including roles in technical sales, support, training and
product management.

Timm Zimmermann
Senior Director, Software-Defined Vehicle Architecture, Aptiv

Timm Zimmermann leads a team of automotive software architects focused on leveraging Aptiv’s Smart
Vehicle Architecture™ for software-defined vehicles. Having spent many years in mainframe development
and security technologies, Timm is applying his experience toward designing an evolutionary design
principle for a next-generation electrical/electronic architecture.

LEARN MORE AT APTIV.COM/MWD →

SOFTWARE CONTAINERS

8

