
Open Server Platform Requires Shifts 
in Hardware and Software
The biggest strength of the software-defined vehicle is that it evolves. A vehicle leaves 
the factory with a certain set of capabilities, but the OEM is able to leverage usage 
data and expand those capabilities over the vehicle’s full life cycle through over-the-air 
updates, enabling it to deliver better driving performance, improve the in-cabin user 
experience (UX), and otherwise make an aging vehicle feel new every day.

Hardware, however, does not evolve. Historically, once the vehicle left the factory, the 
hardware remained the same. 

This dichotomy eventually presents a challenge to the software-defined vehicle. While 
centralizing and serverizing compute can be a cost-effective solution for sharing 
workloads, reallocating resources and extending its usefulness, at some point, the 
compute hardware will be too outdated to take on new software features that require 
faster processing, more memory or greater storage capacity. 

OEMs can address these limitations with the right software and hardware architecture 
— one that not only has the flexibility to dynamically reallocate resources in real time, 
but also allows physical upgrades to just the specific compute components that need 
it the most, well into the future. Done right, the approach will also help them create 
independent software and hardware ecosystems while greatly extending the life of their 
vehicles.

WHITE PAPER

1



BRAIN SURGERY 

We often think of the compute in a vehicle as 
its “brain.” After all, just as a human brain takes 
in information and acts based on that input, 
the vehicle’s compute platform takes in data 
from sensors and other outside sources and 
makes decisions about what to do and what to 
communicate.

A human brain, however, changes and grows over 
time. Babies grow into children, and children grow 
into adults. As their brains physically change, they 
become capable of greater understanding and 
more complex reasoning.

In contrast, computers are static, with defined 
processing limits. As software developers create 
ever more sophisticated and capable applications, 
they push those limits until it is necessary to 
move to the next generation of hardware to 
enable the functions they create.

OEMs can address these limitations with the right software and hardware 
architecture — one that not only has the flexibility to dynamically 
reallocate resources in real time, but also allows physical upgrades to just 
the specific compute components that need it the most, well into the 
future. Done right, the approach will also help them create independent 
software and hardware ecosystems while greatly extending the life of their 
vehicles.

In the automotive world, newer hardware could 
also become necessary to meet evolving 
safety regulations or to ensure that the vehicle 
continues to employ the latest cybersecurity 
measures.

Consumers are used to this upgrade cycle 
in other contexts. In the mobile phone world, 
for example, many people upgrade to a new 
device every two to three years, in part to 
obtain a processor that can adequately support 
the latest apps, functions and cybersecurity 
protections. A key difference, of course, is 
that the expense of replacing an entire phone 
is much less than that of replacing an entire 
vehicle. A vehicle also is obviously far more 
complex, with hundreds of devices distributed 
throughout, which are increasingly connected 
to a central compute unit.

OPEN SERVER PLATFORM

2



Hardware architecture

The solution in automotive is to structure the 
software and hardware architecture so that 
OEMs can upgrade just the compute needed to 
execute higher-level functions.

On the hardware side, OEMs are already moving 
to a zonal architecture, where many of the 
devices in the vehicle connect to their closest 
zone controller, which in turn aggregates data 
from those devices and communicates with a 
central vehicle controller (CVC). In addition to 
working with the zone controllers to handle all 
data communication protocols and signaling 
with the devices, the CVC handles body 
control functions, data storage, vehicle access, 
communication with the outside world, and 
potentially propulsion and chassis control.

In other words, the CVC and zone controllers 
manage all of the lower-level functions 
necessary to run a vehicle. This architecture 
allows higher-level functions to be supported 

by a separate compute platform: the open server 
platform, or OSP. 

The OSP is the brain of the vehicle, performing 
functions that require complex and data-intensive 
compute capabilities, usually related to advanced 
driver-assistance systems (ADAS) or in-cabin 
UX. It might actually be more precise to say that 
the OSP is the cerebrum while the CVC is the 
cerebellum, or “small brain,” because the CVC 
translates directives coming from the OSP into 
actions carried out by the vehicle.

Separating the two architecturally makes a 
lot of sense. The lower-level functions and 
communication with vehicle input/output do 
not change much over the life of a vehicle. But 
higher-level functions are continuously evolving 
as developers solve for more use cases or 
create more innovative UX features. Higher-level 
functions also require more powerful processing, 
more memory and a graphics processing unit.

Separate and Unequal
Different vehicle software domains have different needs, so the hardware architecture must be 

designed to best accommodate those differences. That means running functions either on the central 
vehicle controller (CVC) or the open server platform (OSP), as appropriate.

Connectivity

ADAS

User
Experience

REAL-TIME, RESOURCE
CONSTRAINED

HIGH PERFORMANCE,
UPGRADEABLE

UPDATEABLE
Functional Characteristics

Propulsion
& Chassis

Body

ALMOST FROZEN

Hardware Characteristics

DATA-INTENSIVE

HIGHLY RESPONSIVE

OSP
Module

CVC

OPEN SERVER PLATFORM

3



Software architecture

The software architecture must also be structured 
appropriately to support the separation. The 
key factors are abstraction and interface 
standardization — that is, presenting a standard, 
consistent interface to higher levels of software 
so that those higher levels do not have to be 
concerned with the details of how the lower levels 
work.

At the lowest level is the device abstraction layer, 
or DAL. Devices include everything from sensors 
(such as radars, cameras and thermal sensors) 
to actuators (such as seat controls, door locks 
and window lifters). The zone controllers handle 
all direct communication with devices, and the 
DAL presents a standard set of application 
programming interfaces (APIs) through 
microservices to higher levels of software for 
control and diagnostics. 

For example, the higher-level software could 
request through a DAL API that a window be 
lowered, without having to know how to talk to the 
window lifter motor; instead, the zone controller 
would format the appropriate signal through a 
Local Interconnect Network bus and send that to 
the window motor. Even sensor data streaming 
would be standardized.

The next level is the vehicle abstraction layer, 
or VAL, which abstracts the more complex body 
control functions managed by the CVC. High-level 
software would interact with VAL APIs to get data 
or take actions.

To continue the window-lifter example, abstraction 
at the VAL level could include a service that 
manages all aspects of window operation, 
including user controls, the window lifter motor 
and so on. Say the in-cabin UX function received 
a request from a user via the infotainment system 
to lower all the windows by 50 percent. The UX 
software would send a command to the window 

service with those instructions, which would then 
send individual commands to the DAL APIs for the 
window lifters on each of the four windows for the 
duration necessary to lower the windows by 50 
percent.

Containerization

Another important piece of the software 
architecture is containerization. Software 
containers package together all of the files and 
libraries with the application that needs them, 
making the code relatively independent from its 
host environment. This approach helps to create 
a service-oriented architecture where individual 
services, each tied to its own container, can be 
updated individually without affecting other 
software. 

Containerization also helps disconnect software 
development from the hardware it runs on. 
That means that containerized services could 
potentially be moved from one compute platform 
to another. It also means that containerized 
applications are not tied to the hardware they run 
on, so the hardware that comprises an OSP could 
be changed — from one system-on-a-chip to 
another, for example.

Software containers package 
together all of the files and 
libraries with the application 
that needs them, making the 
code relatively independent 
from its host environment.

OPEN SERVER PLATFORM

4



Layers of Abstraction
Each device in the architecture uses software abstraction to enable higher levels of functionality. 

Power Data Center (PDC) zone controllers handle communications with devices and present a Device 
Abstraction Layer (DAL) to the central vehicle controller (CVC), which in turn presents more complex 

functions to applications running on the open server platform (OSP).

Ethernet

RTU

MIPI A-Phy

Raw 
Radar 
Sensor

Raw 
Radar 
Sensor

MIPI A-Phy

Raw 
Camera 
Sensor

Raw 
Camera 
Sensor

MIPI A-Phy MIPI A-Phy

Cloud
OSP

Module

Displays

CVC

Ethernet

PDC
Middleware

Hardware

DAL

Radar API

OSI CONTAINER RADAR SENSOR

Camera API

OSI CONTAINER CAMERA SENSOR

PDC
Middleware

Hardware

DAL

Radar API

OSI CONTAINER RADAR SENSOR

Camera API

OSI CONTAINER CAMERA SENSOR

Middleware

Hardware

VAL

Radar API

OSI CONTAINER RADAR SENSOR

Camera API

OSI CONTAINER CAMERA SENSOR

Middleware

Hardware

OCI ADASOCI CLUSTER
INSTRUMENT

OCI
INFOTAINMENT

OPEN SERVER PLATFORM

5



A FLIPPED SCRIPT

With those major architectural elements in place, 
the OSP becomes swappable. The hardware is 
structured so that the higher-level functions 
are isolated on the OSP. The software is 
structured so that any applications on the OSP 
communicate to the vehicle through standard 
interfaces. And software containerization 
abstracts the applications’ access to compute 
on the OSP. As the OSP ages and becomes 
unable to run the latest applications or receive 
the latest operating system updates, the owner 
can take it to a dealership to exchange it for 
a newer and more capable OSP — without 
disturbing the rest of the vehicle architecture. 

The ramifications go well beyond the OSP, 
however. Taken together, these factors enable 
independent software and hardware ecosystems.

•	 Machine ecosystems: The hardware can be 
developed and certified independently of any 
application software. Performance can be 
characterized by standard benchmarks such 
as processing speed and memory capacity. 
Development cycles can be 18 months or 
less.

When a vehicle is built with these hardware and software foundational 
elements, the way is clear for realizing the true potential of software-
defined vehicles, ensuring that they have the most up-to-date capabilities 
for years to come. 

•	 Device ecosystems: All devices in the 
vehicle will combine proprietary hardware and 
software but will be aligned to a standard API. 
They will connect via standard buses. Their 
development will not be connected to any 
particular machine or application.

•	 Application ecosystems: Containerized 
applications can move from one hardware 
platform to another without a software 
change. Standard UX and ADAS stacks with 
well-defined APIs can help scale. And all 
applications can be developed in a cloud 
environment.

Because these ecosystems are independent, 
vendor lock-in becomes obsolete. Devices, 
applications and machines can all be replaced 
without disturbing the other ecosystems.

Having swappable OSPs also allows OEMs to 
easily differentiate among models or trim levels. 
Two models with the same devices and CVC could 
have different ADAS or UX capabilities, just by 
connecting different OSPs with hardware that 
correlates with their software capabilities.

OPEN SERVER PLATFORM

6



THE VIEW FROM SVA™

Aptiv’s Smart Vehicle Architecture™ technologies 
take all of these factors into account as they lay 
the groundwork for future enhancements. 

From a hardware perspective, our OSP modules 
can be designed to either stand alone or install 
directly atop a CVC, with a liquid cooling plate 
between them to keep temperatures down. The 
configuration further optimizes hardware cost 
and makes the OSPs easy to swap out when an 
upgrade is needed. 

Automotive Ethernet and PCI Express connect 
the OSPs to the CVC. Current versions of ADAS-
focused compute solutions connect directly to 
some sensors, but future versions will route all 
of those sensor connections through the zone 
controllers and CVC. However, some UX-focused 
OSP implementations may continue to connect 
directly to high-definition displays to support 
their high bandwidth requirements within the cost 
constraints of the architecture.

Built for Exchangeability
Ideally, open server platform (OSP) modules should be designed so that a technician can 

easily change them out when an upgrade becomes necessary.

ADAS OSP
Camera & radar management

CVC (MAIN BOARD)
Body control, chassis, propulsion & communications

LIQUID COOLING

UX OSP
Infotainment (displays, audio, cameras)

MODULAR
Exchangeable OSP modules
cooled by the CVC unit

MULTI-FUNCTIONAL
Handles ADAS & UX or provides
additional data-acceleration features
such as AI/ML, gateway routing, etc.

EFFICIENT THERMAL 
MANAGEMENT
Liquid cooling designed to last 
vehicle lifetime

From a software perspective, we are moving 
toward signal-to-service abstraction, and our 
acquisition of Wind River gives us access to 
its VxWorks® real-time operating system and 
support for Open Container Initiative-compliant 
containers in safety-critical environments. 

As SVA™ technologies evolve, our approach 
will provide for the fail-operational redundancy 
needed for Level 3 and above automated 
driving. With the flexibility that comes from 
containerization, applications can move from one 
OSP to a second OSP for redundancy, which the 
OSP modules installed atop the CVC are ideally 
suited to support.

When a vehicle is built with these hardware and 
software foundational elements, the way is clear 
for realizing the true potential of software-
defined vehicles by ensuring that they have the 
most up-to-date capabilities for years to come.

OPEN SERVER PLATFORM

7



ABOUT THE AUTHORS

Martin Bornemann
Vice President, Advanced Technology & Architecture, 
Chief Technology Office

Martin Bornemann is responsible for the advanced technology and architecture development in Aptiv’s 
CTO office. He has been with Aptiv for more than 20 years, holding positions in innovation management, 
project management and hardware development. Before joining Aptiv, he designed telecom equipment for 
Ericsson and conducted wireless LAN research for Bosch.

Benjamin Gould 
Product Management Director, Compute 
Global Product Organization

Benjamin Gould is responsible for defining Aptiv’s next generation of compute, the brain of the software-
defined vehicle. Benjamin joined Aptiv in 2021 as chief customer engineer, and prior to that he was senior 
project manager at Mobileye. Benjamin started his career at Intel, where he spent 20 years in industrial 
engineering, application engineering, technical marketing and product marketing management. Benjamin 
has a bachelor’s degree in electrical engineering and applied physics from Case Western University.

Cezary Klimasz 
Technical Program Manager, Compute 
Global Product Organization 

Cezary Klimasz leads the design and development of Aptiv’s central vehicle controllers and open server 
platforms. His team is working on next-generation computing platforms leveraging high-performance 
hardware with state-of-the-art software solutions. Cezary began his career with Aptiv in 2012 as a 
hardware engineer. Since then he has held various roles in product and technology management.

LEARN MORE AT APTIV.COM/ADAS →

OPEN SERVER PLATFORM

8

http://aptiv.com/adas

