
RTOS and Linux Are Defining
In-Vehicle Computing – Together
As the industry moves from function-specific hardware and software to centralized
in-vehicle computing and software-defined vehicles, it is clear that Linux will play
a significant role in future vehicle platforms. Linux has a long and proven history
in other industries and is extremely flexible, which makes it a natural choice for
automotive applications.

But as OEMs introduce applications with specialized requirements — especially around
functional safety for fully or partially automated driving — there is a need for a real-
time operating system (RTOS) that is optimized for deterministic latency in safety-
critical use cases.

In evaluations of potential future in-vehicle software architectures, it is important to
understand the relative strengths of Linux and RTOSes and how they complement
each other in this changing landscape.

WHITE PAPER

1

KEY DIFFERENCES

Not all applications have the same timing
requirements, and the differences among those
applications necessitate different approaches to
the operating systems that support them.

Some applications do not need to guarantee that
they will complete their tasks within a specific
time frame. The application should run as fast
as possible, but minor delays are acceptable.
Automotive examples include telematics, remote
services and traffic prediction. These are non-
real-time (non-RT) applications.

With other applications, a delay might result
in a less-than-optimal user experience. In the
automotive world, these applications include

some functions of advanced driver-assistance
systems, such as lane-departure warning and
blind-spot monitoring. They deliver important,
timely information but do not require an
immediate response by the driver. The OS needs
to enable the scheduling of tasks but does not
need to guarantee predictable performance or
the protection of the tasks from interference
from other applications. These are considered
“soft” RT applications.

But for other applications, a delay could have
serious consequences. Examples include software
functions that control a vehicle’s movement, such
as automatic emergency braking, lane changing,
and autonomous vehicle maneuvering to avoid
collisions. These are called “hard” RT applications,
and they are often safety-critical.

What Is Real-Time?

A real-time system can guarantee that tasks consistently execute in a specific time constraint.
Determinism is the characteristic that describes how consistently a system executes tasks within a

time constraint. In a deterministic system, the sequence of executing tasks is always the same.

Non-Real-Time Soft Real-Time Hard Real-Time
Deterministic

Execution

Infotainment
Telematics + Remote Services

Voice Recognition
Lane Departure Warning, Blind Spot Monitoring

Traffic and Congestion Prediction

Event Based
Priority Based

Time Based
Priority Based

Guaranteed Execution in Certain Limits

Powertrain Control
Active Suspension
Collision Avoidance
Engine Management

Airbags, Electric Steering
Braking Systems, ABS, ESC

RTOS AND LINUX

2

The contenders

As a general-purpose operating system,
without modifications, Linux is suitable only for
applications where delays can be tolerated.

Linux has proliferated across enterprises and
industries partly due to its low cost and vast
ecosystem of open-source developers and tools.
OEMs have adopted or evaluated Linux for a wide
range of vehicle applications, and it has already
proven ideal for some.

In contrast, an RTOS is designed exclusively
for real-time applications, with features that
guarantee that a given input will produce the
same outcome on time, every time. The RTOS
enables RT applications to reserve OS resources

at specific times and use them to complete tasks
by strict deadlines. It ensures that events take
place at the correct time, not just as soon as
possible. These characteristics are indispensable
for hard RT applications.

In addition, RTOSes have fewer lines of code
compared with general-purpose OSes. This
gives OEMs several benefits. From a security
perspective, less source code translates into less
surface area for attackers to target, reducing risk
and the work required to mitigate it. That said, it
is still important to use an RTOS designed with a
secure development lifecycle. In terms of safety,
a smaller, less complex OS takes less effort to
certify for functional safety standards. These
advantages can help OEMs bring a vehicle to
market faster.

Right Tools for the Job

Different variations of operating systems are appropriate for different
applications within a vehicle.

Less
Deterministic

Highly
Deterministic

High
Latency

Low
Latency

RTOS (e.g. VxWorks)

RT-Patched Linux

Standard Linux

 Safety-Critical
Systems (Hard RT)

 General-Purpose
Workload (Soft RT)

RTOS AND LINUX

3

Mix and Match

Various operating systems can coexist side-by-side on the same hardware, but they
should be logically separated via a hypervisor, and on different cores as needed.

L
in

u
x

A
n

d
ro

id

R
TO

S

RTOS RTOS

Cortex-A Cluster Cortex-R52+ Cortex-R52+

Hypervisor Hypervisor

Running RT workloads on an RTOS can also
reduce costs. With less source code, an RTOS has
lower CPU and memory requirements, which can
translate into a lower hardware bill of materials.
If an RTOS has been precertified for safety, this
saves OEMs the considerable cost of certifying
it themselves. In addition, RTOSes — especially
their source code and APIs — change more
slowly, reducing maintenance and security costs,
preserving an OEM’s investment, and reducing
the need to re-certify the operating system due
to changes.

MODIFYING LINUX FOR SOFT RT
APPLICATIONS

While RTOSes are the clear choice for hard RT
applications, several Linux patches now make it
possible to run soft RT applications on versions
of Linux.

These allow OEMs to shift some real-time
functions from an RTOS to Linux, but doing
so may affect performance and manageability
in some ways, including the following:

Timer slack

A patch to the Linux kernel increases the
resolution of kernel timers by making it possible
to wake up the CPU more frequently. This
allows for nanosecond precision, which some
RT application threads require. However, waking
up the CPU more often may increase power
consumption and reduce CPU efficiency. The
patch also enables more accurate timing in
RT threads but does it by using timer slack, a
technique that delays events in threads with
normal timing policy. This can cause more jitter
in asynchronous applications.

RTOS AND LINUX

4

Process suspension

Because RT systems are engineered to execute
the current top-priority task on deadline, it is
often necessary to use a custom scheduling
method rather than the Linux kernel’s standard
method. If an RT process is trying to use
100 percent of a CPU, the kernel’s standard
scheduling method suspends the process for
50ms every second. A patch for RT support
deactivates the suspension mechanism, but this
feature is so essential to the kernel’s scheduling
system that removing it may cause instability or
failure.

There is industry momentum behind making Linux
more applicable for safety-critical applications,
including an initiative called Enabling Linux in
Safety Applications (ELISA), which is working with
member companies, certification authorities and
standardization bodies to establish how Linux
can be used as a component in safety-critical
systems.

HOW RTOS AND LINUX CAN
COEXIST

By running all hard-RT vehicle applications on an
RTOS and devoting Linux to non-RT and soft-
RT workloads, OEMs enjoy the inherent benefits
of the RTOS while minimizing the complexity
of Linux. This is likely to reduce software
development and maintenance costs and improve
security.

Centralizing onboard processing gives OEMs an
ideal opportunity to run Linux and an RTOS side
by side. Shared computing platforms can host
multiple OSes running applications with different
levels of criticality by using two key technologies:
software virtualization through a hypervisor, and
hardware isolation on separate processor cores.

Software virtualization

Soft-RT applications can run on the same set of
cores as Linux and other OSes in a virtualized
system that allows the flexible use of resources.
(See example in sidebar.) Each OS runs in its

own virtual machine, with a hypervisor (such
as Wind River Helix Virtualization Platform)
managing common memory, computing resources
and processor cores across a cluster of ARM
Cortex-A performance cores. Within applications,
containerization may provide a further layer of
virtualization for more flexible development and
maintenance.

Hardware isolation

Safety-critical applications can run on one or
more RTOSes and coexist on the same system-

USE CASE: AUTOMATIC
EMERGENCY BRAKING

One example of how Linux and an RTOS
might work together in a vehicle is the
implementation of automatic emergency
braking, a hard-RT application.

As a vehicle approaches an object, its
cameras, radars, lidars and inertial
sensors send data to zone controllers,
which forward the data to the central
vehicle controller. Software running on
Linux on that device uses computer
vision and machine learning algorithms to
fuse the sensor inputs and put them in
context.

The Linux software sends that data to
the braking regulator, a small application
connected to the braking system. The
braking regulator runs on a safety-
certified RTOS to ensure that it can
apply the brakes at precisely the right
time. By applying an algorithm to the
contextualized sensor data, the braking
regulator constantly calculates the risk
of a crash and applies the brakes when
necessary.

RTOS AND LINUX

5

on-a-chip as non-safety-critical applications, but
isolated on a “safety island” using Cortex-R cores
— as long as the RTOSes, the hypervisor and
the cores are rated to support ASIL-D risk levels.
The safety island may contain multiple OSes
virtualized through a hypervisor. Isolation on
the safety island prevents failures in less-critical
applications from crashing applications that
affect life safety.

Evolving with hardware architectures

These configurations can be implemented
in current and future vehicle architectures
with varying degrees of centralization in
domain architectures, zonal architectures or
a combination. In all cases, middleware is the
essential glue that enables communication and
coordination among all containers, applications
and OSes in the vehicle. Multiple OSes will run on
many cores under one software stack, with cores
assigned to different OSes as necessary.

EMBRACING THE POSSIBILITIES

The trend away from purpose-built electronic
control units and software in favor of software-
defined vehicles has opened up space in vehicles
for a variety of OSes, including Linux. With
high performance and a large development
ecosystem, Linux complements deterministic,
safety-certified RTOSes. OEMs that understand
the benefits and limitations of each can deploy
them on centralized hardware with unprecedented
flexibility, improving future vehicles and making
development faster and more cost-effective.

In 2022, Aptiv acquired Wind River, which
specializes in providing tools that support robust,
reliable and secure embedded solutions, including
Wind River Linux and the Wind River VxWorks
RTOS. Both offer unique strengths for automotive
applications and draw from a long pedigree of
supporting safety-critical operations in other
industries.

RTOS AND LINUX

6

ABOUT THE AUTHOR

Rob Woolley
Principal Technologist, Wind River

Rob Woolley is a Principal Technologist at Wind River in the CTO Office. He has 25 years of
experience with both enterprise and embedded Linux and more than 15 years with the VxWorks
RTOS. He is actively involved with the open source community as the maintainer of the Robot
Operating System framework for OpenEmbedded and participates in Zephyr RTOS and ELISA
from the Linux Foundation. His current focus is on using cloud-native technologies to orchestrate
workloads on edge devices, including software-defined vehicles.

LEARN MORE AT APTIV.COM/MWD →

RTOS AND LINUX

7

https://www.aptiv.com/mwd

